Real Number Labelings for Paths and Cycles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Number Labelings for Paths and Cycles Real Number Labelings for Paths and Cycles *

The problem of radio channel assignments with multiple levels of interference depending on distance can be modeled using graph theory. The authors previously introduced a model of labeling by real numbers. Given a graph G, possibly infinite, and real numbers k1, k2, . . . , kp ≥ 0, a L(k1, k2, . . . , kp)-labeling of G assigns real numbers f(x) ≥ 0 to the vertices x, such that the labels of ver...

متن کامل

Real Number Labelings for Paths and Cycles

The problem of radio channel assignments with multiple levels of interference depending on distance can be modeled using graph theory. The authors previously introduced a model of labeling by real numbers. Given a graph G, possibly infinite, and real numbers k1, k2, . . . , kp ≥ 0, a L(k1, k2, . . . , kp)-labeling of G assigns real numbers f(x) ≥ 0 to the vertices x, such that the labels of ver...

متن کامل

Multilevel Distance Labelings for Paths and Cycles

For a graph G, let diam(G) denote the diameter of G. For any two vertices u and v in G, let d(u, v) denote the distance between u and v. A multi-level distance labeling (or distance labeling) for G is a function f that assigns to each vertex of G a non-negative integer such that for any vertices u and v, |f(u)− f(v)| ≥ diam(G) − dG(u, v) + 1. The span of f is the largest number in f(V ). The ra...

متن کامل

Antipodal Labelings for Cycles

Let G be a graph with diameter d. An antipodal labeling of G is a function f that assigns to each vertex a non-negative integer (label) such that for any two vertices u and v, |f(u)− f(v)| ≥ d− d(u, v), where d(u, v) is the distance between u and v. The span of an antipodal labeling f is max{f(u)− f(v) : u, v ∈ V (G)}. The antipodal number for G, denoted by an(G), is the minimum span of an anti...

متن کامل

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Internet Mathematics

سال: 2007

ISSN: 1542-7951,1944-9488

DOI: 10.1080/15427951.2007.10129140